7 research outputs found

    Optimal Fleet Sizing of Personal Rapid Transit System

    Get PDF
    Part 5: Modelling and Optimization; International audience; In this paper, we address the problem of determining the optimal fleet size for Personal Rapid Transit system (PRT). In our problem, we consider electric battery and distance constraints which are found in real world application of the PRT system. To tackle this problem, we propose two valid mathematical formulations that are able to find optimal fleet size. Extensive computational experiments show that the edge based formulation performs impressively well, in terms of solution quality and computational time in comparison to the node based formulation. Document type: Part of book or chapter of boo

    Graph-related optimization and decision support systems

    No full text
    Constrained optimization is a challenging branch of operations research that aims to create a model which has a wide range of applications in the supply chain, telecommunications and medical fields. As the problem structure is split into two main components, the objective is to accomplish the feasible set framed by the system constraints. The aim of this book is expose optimization problems that can be expressed as graphs, by detailing, for each studied problem, the set of nodes and the set of edges.  This graph modeling is an incentive for designing a platform that integrates all optimizati

    Viability of Implementing Smart Mobility Tool in the Case of Tunis City

    Get PDF
    Part 5: Modelling and OptimizationInternational audienceNowadays, different changes from the economical, societal and environmental contexts are happen in cities. In fact, cities are generally the best place to endorse and enhance various experience in order to improve the quality of life of its citizens. In this context, the new vision of Smart Mobility fill into this context. The concept of Smart Mobility as a means to enhance the mobility experience of citizen has been gaining increasing importance in the agendas of cities stakeholder. It represents the best balance the economic, environmental and societal aspect of current transportation tools. The implementation of the smart mobility concept in the case of Tunis city is the subject matter of the paper. In fact, we focus on considering the Personal Rapid Transit system as an effective and efficient tool to bring smart mobility experience to Tunis city. This paper also presents and study the viability of implementing PRT in our specific context. An extensive simulation and economic feasibility study is conducted to validate our proposal. Computational results prove the different advantages of our proposal in the studied context

    Dealing with the Empty Vehicle Movements in Personal Rapid Transit System with Batteries Constraints in a Dynamic Context

    No full text
    The Personal Rapid Transit is a new emergent transportation tool. It relies on using a set of small driverless electric vehicles to transport people on demand. Because of the specific on-demand characteristic of the Personal Rapid Transit system, many Personal Rapid Transit vehicles would move empty which results in a high level of wasted transportation capacity. This is enhanced while using Personal Rapid Transit vehicles with limited electric battery capacity. This paper deals with this problem in a real time context while minimizing the set of empty vehicle movements. First, a mathematical formulation to benchmark waiting time of passengers in Personal Rapid Transit systems is proposed. Then, a simulation model that captures the main features of the Personal Rapid Transit system is developed. A decision support system which integrates several real time solution strategies as well as a simulation module is proposed. Our dispatching strategies are evaluated and compared based on our simulation model. The efficiency of our method is tested through extensive test studies
    corecore